Kendall Hunt appreciates the opportunity to address the EdReports.org review of *Math Trailblazers®* grades 3-5. As publisher of the program, we believe in both our curriculum and the notion that school systems must maintain their right to choose and implement educational content models that best meet locally determined learning objectives and the specific needs of their community’s students, teachers, and parents.

To most effectively address the EdReports.org review, we have asked the *Math Trailblazers* author team from the Teaching Integrated Math and Science Project (TIMS) at the Learning Sciences Research Institute at the University of Illinois at Chicago to clarify the curriculum’s philosophy and instructional design, as it seems to be the source of misunderstandings about the program. Their response follows:

The following beliefs informed the development and instructional design of *Math Trailblazers®* Fourth Edition (MTB4):

- Curricula should focus on developing students’ abilities to think critically while solving relevant and complex problems.
- Districts must have autonomy and flexibility to decide how to address the Standards to best meet the needs of their students.
- Teachers need tools to guide their choices, not a script, because one size curriculum does not fit all.

It appears that EdReports.org’s assessment of our program was seemingly done without a clear understanding of how MTB was designed to address these beliefs. MTB4 has been designed to engage students through challenging, problem-solving contexts that reveal the thinking of emerging mathematicians and build on that knowledge to formalize understanding. While EdReports.org’s goals are admirable and welcome, the results of its cursory review of MTB4’s focus and alignment misrepresent the program’s instructional design.

Based on research and field test data, our curriculum underwent substantial revision by a team of mathematicians, scientists, education researchers, and teachers. This work did not result in a skeletal curriculum designed to simply cover the Standards. MTB4 was written with the belief that all children deserve a challenging mathematics curriculum and an educational experience that helps them actively participate in and think flexibly about mathematics, see connections between the math they learn in school and everyday life, and have critical-thinking and problem-solving skills applicable to other disciplines and required for future success.
Use of MTB4 proves that a curriculum can support students and teachers to meet the expectations outlined in the Standards while acknowledging students’ desires to engage in relevant and interesting problem solving.

We invite educators to contact us directly to obtain materials that meticulously detail MTB4’s alignment to the Standards, the ways its instructional materials focus on the major cluster topics, and how the majority of class time is devoted to such work.

A more comprehensive review than the one EdReports.org has provided would show that MTB4 does focus on the major work of the grade level, is coherent within and between grades, and that there are numerous errors in EdReports.org’s assessment of this requirement at each grade level. For example, the report incorrectly claims that no units in fifth grade cover multiplication fluency. Students using MTB4 regularly develop fluency by using multiplication and division to do math. They also systematically practice and are assessed in the highly effective distributive practice in Daily Practice and Problems and Home Practice included with every unit. In Grade 4, equally perplexing is how addition and subtraction units are not considered work with the four operations, and that only 3 of 12 units were identified as focused on the major work of the grade. Our analysis shows major work being done in nearly all Grade 4 units.

By design, MTB4 does not “cover” one isolated topic in one unit or one month because research shows that is not how students learn. Perhaps when reviewers did not find units neatly entitled “Multiplication Fluency,” they were unable to easily find the topics, and evaluated the curriculum incorrectly. We think reviewers simply counted the number of units where the topic was easily identified, resulting in the underrepresentation. A more precise assessment shows that 81 of 95 third grade lessons (85%), 86 of 97 fourth grade lessons (89%), and 79 of 92 fifth grade lessons (86%) focus on major work.

In response to the claim that MTB4 contains material not within the grade level focus, reviewers seem to have misunderstood the reason for including such material and may have missed the fact that MTB4 is rich with grade-level appropriate content. As a result, the curriculum was penalized. The inclusion of this additional material is intentional, with content specifically placed to help teachers who work with young mathematicians to access and understand the critical areas of study.

For example, while the report criticizes MTB4 for including mean, median, and mode in a 4th Grade lesson, students use these tools to manage measurements as they generate models and analyze multiplicative relationships. This supportive secondary story provides another context for multiplication and division—major clusters of study in fourth grade. This report is also critical of the inclusion of ratios in fifth grade. Careful analysis would show the important connection between ratios and fractions. Including work with ratios helps to better reveal students’ understanding of fractions, and evokes deeper reasoning. Learners need time to
explore, develop, build upon, revise, solidify, and make their own meaning of topics such as these well before the grade where they are assessed. With this cross-grade level design, students gradually access material through developmentally appropriate contexts, allowing their conceptual understanding of the ideas to grow naturally.

Similarly, we must address a misunderstanding concerning content and assessment. MTB4 provides numerous assessment opportunities, both formal and informal, embedded throughout the lessons, so timely feedback can effectively guide instruction and improve learning. Instead of a system that relies only on summative assessment after student work is complete, this research-based, balanced approach gives teachers better information about where they are going, what students know, and how to make instructional decisions in a timely manner. Items that refer to above grade-level expectations were included to assess problem solving and the standards for math practices, and to provide teachers with developmentally appropriate information about students’ understanding of grade-level work within a context, not their mastery of the above grade-level Standard.

Another comment addressed the quantity of material in Grades 4 and 5. MTB4 intentionally includes more material than a teacher can cover in a school year. This allows teachers to assess their students, make instructional choices, and choose the materials that will move their students forward. MTB4 has added practice so that teachers do not have to invent their own, but that does not mean that every problem needs to be completed, discussed, reviewed, or graded. While we see merit in the standardization of math goals, not all students and classrooms are the same, and curriculum is not a script. MTB4’s materials are wrapped around strong, built-in professional development at the unit and lesson level, allowing teachers to make instructional decisions that meet the individual needs of their students and provide practice that helps advance all learners.

A coherent curriculum purposefully and systematically sequences specific ideas to support conceptual understanding and reasoning. Students are challenged to make connections between representations, ideas, and concepts. In MTB4, authentic situations and strategic reasoning are threads that connect these experiences and concepts. MTB4’s strategic approach to the math facts and whole number computation within and across the grade levels is well illustrated by looking at the strategies menus introduced at the lesson level and reinforced for home use in the Student Guides’ Reference sections. In MTB4, concepts are revisited within new contexts to see if students can apply what they understand, recognize the limits of their understanding, and seek new ways to make connections between concepts and representations.

Had EdReports.org completed the analysis of Gateways 2 and 3, and had reviewers explored MTB4’s rigor and attention to the mathematical practices, it would show that the program’s deep and rich mathematics presents ongoing opportunities for
students to apply math concepts in real-world situations. A more thorough study would reveal the balance between developing students’ conceptual understanding, procedural skills, and fluency. Equally important is MTB4’s close attention to teachers as learners, supporting and transforming instruction to improve student achievement.

We look forward to seeing results from our users as they report data from their standardized assessments and anticipate that an item analysis will show that MTB4’s material is an effective fit. While we acknowledge EdReports.org’s intent, its analysis process does a disservice to all who are looking for a research and standards-based mathematics program that not only presents well on a Standards rubric, but is also powerful for students and transformative for teachers.

For a more detailed analysis of the major work addressed by Math Trailblazers at each grade level, go to kendallhunt.com/edreportsrebuttal

For more information, or to request review access to Math Trailblazers, contact Kendall Hunt at KHinfo@kendallhunt.com.

To speak with the Math Trailblazers author team, contact the TIMS Project at mathtrailblazer@uic.edu.